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SURFACE PROPERTIES AND STABILITY OF SHOCK WAVES IN GASES* 

A.G. BASIIKIROV 

The boundary conditions on a curved shock wave are obtained from the 

laws of conservation of mass, energy, and momentum, ahead of the shock 

front, in the shock layer, and behind the shock front. They differ 
from the well-known conditions, allowinq for the viscosity of the gas and 

heat conduction, in having extra terms, proportionaltothe shock-front 

curvature, the main extra term being the surface pressure with the surface 

tension. It must be said that, if the surface tension on the equilibrium 
inter-phase surfaces is linked with the anisotropy of the mean virial 

of the inter-molecular interaction force, then it is determined in the 

shock wave by the anisotropy of the viscous stresses in the shock layer 

and reaches a value 1 N/m at Mo= IO and 10 N/m at Al,-30. By taking 
account of surface tension when analysing the stability of a plane shock 

wave with respect to weak disturbance of the surface of discontinuity, 

we arrive at absolute instability of the mode of spontaneous sound 

radiation, which has previously been regarded as neutrally stable. 

1. The boundary conditions on the discontinuity. The system of laws of con- 

servation of mass, energy, and momentum densities throughout the gas volume, including the 

shock layer, is 

To describe the flow inside the shock layer we have to take account of the viscous stress 

(T(x, t) and the heat flux q. In the incoming flow and the flow behind the shock front, the 

density 6' (x, t), velocity v (x, t), pressure p(X, t), viscous stress tensor o(s, t), internal 

energy density u (~,t) and head flux q (x, t) transform into the functions po, "O,p~,~O, CT,, == q0 T 

0 and p,, L',, RI, (s~,u,. ~1~ respectively, described by the equations of hydrodynamics of an ideal 

or viscous fluid. Inside the shock layer the profiles of these quantities can be obtained 

either in the Navier-Stokes approximation (for a weak shock wave), or by methods of the kinetic 

theory of gases. 
Since the shock-wave structure will henceforth not be of independent interest, the 

differently scaled gas flow can be described approximately, by considering the shock layer as 

a surface of discontinuity. 

To obtain the relations between the hydrodynamic parameters pO,~‘O.~~U,~O and [',,L‘,.P,,~,,u~. 

(jl on the discontinuity, we locate a surface 2 (I) inside the shock layer (thetimedependence 
reflects the deformations ofthediscontinuity) andwe define the excess values of the flow para- 
meters p*, c*, as 

\‘ cx 
p*(‘, I)= i [f)(\,f)--(hJ]dZ$ j’[p(‘J-_l’&is (1.2) 

-.. t 

where the z axis is along the normal II to S with respect to the gas flow. 

By displacing r (t) inside the shock layer, we can arrange for any one of the excess 

parameters to vanish. Below, for clarity, we position Z (t) in such a way that I.,,* = 0. If 

the profile I',*(Z) in the stationary shock wave is written approximately as 

v,, (z) = 1/2 (L.,, + vl) - I/* (uO - vl) th (2218) (1.3) 

where 6 is the shock-layer thickness, then, in view of the equation p (z)u,,(z) = p,,~,,, we obtain 
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from (1.2): 
p* = --1/Ipo6 (v,Iu, - 1) In (u&J (1.4) 

Applying the operation defined by (1.2) to the laws of conservation (1.11, we obtain 

Gp* + div,(pu,)* =(vo,- @PO - (uln- ur)Pl - (1.5) 

(Po")*(& + $) 

&(Pv)* + Div,(p vv --a)* + v,p* =n(po -p1+ Ul) + 

[povo(v,,- Q)- Pivi(%- us)] - +(PG'- Puxi2)* - 

&(pQ-pL&)' + + (d,-%I*) + $ (a:,-- uzz*) 

$(u + l/zp~2)* + div,J,* =(UO + 1/~p~~~2)(~~n - VI)- (~1 + 

1/2plL9)(Uln- a) + povon - Plhn + 

'uln?Pln-Qln - Jn*(& + &) 

J = (u + p + 11, pu2 - u) v + q 

Here we have used the well-known expressions (see e.g., /l, p.29/) for the divergence 

of a vector and tensor in curvilinear coordinates z,zI,zi connected with the surface 8. The 

radii of curvatureRland R, are given in terms of the Lam& coefficients Hz = 1, H,, II, by 

1 1 all, 1 1 aH* 
- = H, Rl -az 

-- 
’ z = H, dz . 

The surface divergences are introduced by the relations 

diva=%+(-& +$a,+div+, 

(Div T),= 
arzr 
dz + -&-CT,, - Tn) + +(T,, - TPS) + (Div, 77, . 

The surface laws of conservation (1.5) will be analysed for the special case of weak 

deformation of a plane normal shock wave: 

2 = j (x, t) = j exp (i (kx - wt)), + zzz s = - p; _ 
While the general case of any surface C (t) involves no difficulties in principle the 

working is laborious and unnecessary for the problem below of plane shock-wave stability. 

We shall first estimate the terms on the left-hand sides of (1.5). Since all the excess 

densities are proportional to 6(&'),where ~!I=M,cos(~?~:&r), then ap* ot - p*tib;~, au*iat - 
U*k20c2, 8 (p~r)*t'~Yt - p*~&o~. 

It can be seen in a similar way that, of all the terms with space derivatives on the 

left-hand sides of (1.5)) only tliv, (pur)* : --p*~'~k?c makes a contribution of the first order 

of smallness with respect to k-5. 
We thus obtain from (1.5), in the linear approximation with respect to h-5, the following 

boundary conditions for the curved surface: 

PO (%I - vr)=Pr(~ln- uz)-p*vo& 

PO + PoGJn(~otl- vn) = m-i- plVln(Ul" - vz) - %n + pz 

povo,(vez- us) = pivlr(~, - Q)- crnr + p*voM 

(uo + '/2POVO2) (%I - vz) + poJJ,= (u1$- l/aplUl*)(Uln - L.2) f 

(zh- end 4n + Qm 

(1.6) 

On the right-hand side of the second relation we have 
the surface pressure with surface tension 

m 

pz=(& +G)y, y=- (a:,-&) =-s (%I- 07,) (12 (4.7) 

Fig.1 00 

(cnn (z), ct7 (2) are the viscous stresses in the shock layer). 

2. Estimation of the surface tension. In the Navier-Stokes approximation we have 

from (1.7) to the zeroth order with respect to the shock-wave curvature: 
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Putting f~ (2) - (T (2))" , and taking the dependence of T(z) and u,,(z) in the form (1.3)) 
we find 

In the presence of ionization of dissociation, the temperature and velocity characteristic 
profiles in the shock layer have the form givenin /2/and shown in Fig.I(nf, = 30, p. = 1.0 mm Hg, 
T0 = 3@Ofc, argon). Analytically these profiles can be written approximately as 

U(z)=~++%h$, -m<z<z’= 

u(z)=%&Y??. +?!.+h +!d, &‘<z<cx, 

Zl > z* > 0 I 

U = VT, u” = v’, T” are the values on the plateau of the relaxation zone. In this case we 

obtain from (2.1) 

YNS = y2v (UO - VI) P (To) (2.3) 

It then follows from (1.7) that 

where es is the inverse Reynolds number over the front curvature. 

For the data of Fig.1, L.& cz 20, TO/T, cz 6. The exponent a depends on the intermolecular 

interaction and varies from 0.5 to 1.2, so that ~2 can be two orders greater than (Jmn. 

A similar estimate can be obtained for a gas with oscillatory-rotational relaxation. 

According to kinetic theory /3/ of shock waves, nitrogen u,Iv, 115, T','T, e 3 with M, = 20, SO 

that JJ~ is one order greater then the viscous stress. 

It is clear from these estimates that, when writing the boundary conditions /4/ on the 

discontinuity up to ~a, account must be taken of pr. 

The above estimate of y is obtained in the context of the hydrodynamic theory of shock- 

wave structure. We know /5/ that this theory satisfactorily describes the shock-layer 

structure only in the case of extremely low Mach numbers I%~,E 1, whereas, in the problem 

below, of shock-wave instability, we are interested in large M,. However, y is an integral 

characteristic of the layer, so that we can expect it to be satisfactorily described by the 

approximate hydrodynamic theory. 

To prove this, we will calculate (2.3) for an ideal monatomic gas and compare the result 

with the calculation by the method of the kinetic theory. 
In the case of a monatomic gas of rigid spheres 

12.4) 

For small and large M,,this expression transforms as follows: 

yns InI,-1 = 2 V% (MO - 1) hop0 = 3,03hop,(Mo - 1) (2.5) 

I’NS j&-m zz 0,5ShopoMo2 (2.6) 

We will consider the expression for the surface tension, obtained by the best known Tamm/ 

Mott-Smith kinetic theory of plane normal shock-wave structure /6, 7/. 

In this theory the molecular velocity distribution is the sum of two Maxwell distribution 
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functions 

f (4 = fo (4 + fl (4 

fa cz) = II, (z) (* )“* exp (- m (tkJ7)’ ] 9 a = O, I 

where T, and v, are assumed constant, while the densities of the number of particles depend 

on the coordinates: 

.o(z)=$+-th$), nl(z)=+(l+th$) W) 

The coefficient B has the form* (*V.YU. Velikodnyi, Transport equations of multicomponent 
gas mixtures and strongly non-equilibrium gases, Candidate Dissertaion, MFTI, Moscow, 1982.) 

Using distribution function (2.7), we calculate the mean flow velocity, and the components 

of the pressure tensor IIij = p - Uii 

v (z) = 
(Cz> no (2) % + m (2) 4 _ 

no (2) + m (2) no (2) + n1@) 

IIrr (z) = m(cxz) = m (c,*) = no (z) kTo + nl (4 kT, (2.9) 

(2.10) 

It is clear from this that, for a plane shock layer, kinetic theory, like Navier-Stokes 

theory, leads to the diagonal form of the pressure tensor in which the normal and tangential 
components are different. 

Substituting (2.9) and (2.10) into definition (1.7) and integrating across the layer**, 
(**A.G. Bashkirov and G.A. Korol'kov, Surface tension of a shock-wave front, in: Aerophysics 
and geo-cosmic studies, MFTI, Moscow, 1983.) approximation is 

In the limiting cases of extremely weak and strong shock waves: 

yMs I&&-l= + I/ -g bpo (MO - 1) = 3,03hopo (MD - 1) (2.12) 

YMS lMo_m 72. 0,92hopoMo2 (2.13) 

Notice that (2.12) is exactly the same as (2.5), while (2.13) is less twice the size of 

(2.6). We can therefore assume that the Navier-Stokes theory corectly describes the shock 

layer integral characteristics (in order of magnitude), since the Mott-Smith theory agrees 
well with the experimental data in /5/ on shock-wave structure in monatomic gases. 

With T,=300K we obtain from (2.6) and (2.13): y-i N/m for M,= 10 and y-11u N/m for 
M,=30.Numerical integration of the results in /8/ for II,,,,(z) and Urr(z), obtained by the 
Monte Carlo method with M, = 8 and To= 300K gives y-l N/m. Similar processing of the 
experimental results of /9/ on the measurement of Unn and IIfl in a shockwavein helium with 
MO = 1.59 and T,= 160 IF leads to y-O.26 N/m. These values agree well with our (2.4) and (2.11) 

Such a large surface tension of the shockwave (recall for comparison that, under normal 
conditions, on the surface of water, y = 0.07 N/m), is bound to affect its properties. In 
particular, they can explain the well-known experimental data on the excess pressure behind 

the front of a spherical shock wave /lo/. 

. 

3. System of equations for small disturbances of discontinuity and flow. 
In this and the next sections we shall first confine ourselves to the approximation of hydro- 
dynamics and an ideal fluid for the gas behind the shock layer. We take a plane stationary 
shock wave of arbitrary intensity, satisfying the conditions M,> l,hf, = v,lc,<l. We specify 
a weak disturbance of the shock front as 5 (.z, t) = 5 exp {i (kz - cot)), so that vr = -ioc. 

The shock-front disturbance generates harmonic disturbances of entropy 6s, pressure tip, 
velocity SV, and specific volume 61’ in the flow behind the shock front (z >O). They must 

satisfy the equations of ideal fluid hydrodynamics, which follow from (l.l), and the four 
linearized boundary conditions (1.6). The result is a homogeneous system of eight equations 
for the eight variables 5, 6p,, b,,, &I,,, &I,,, 6v,,, 6V,, 6V,, where subscript 1 refers to the entropy 
disturbances, and 2 to the acoustic disturbances, 
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ktiu,, + (O/Q) 6ul, = 0, 6p, + (c2/V2) 61’~ = 0 

(hl - 0) su,, t VlkGp, = 0, (VIZ -co) 6v,, + V&p, = 0 

6u,x + 6%x - ik (u, - ~1) 5 + kop*Vo< = 0 

6u,, + b,, + XiA [s - wj =O 

8P2 + 6P, w, + 6V, 

PI - PO +TpT- 
2i+o 

6p, + @6p, - ( -$)H (WI -c 6Vz) = 0 

cD=-+vI[~-~(vl+vo)]-l 

(3.1) 

(taPiav)H is the derivative aionq the ordinary Hugoniot shock adiabatic). 

A detailed derivation of this system may be found in /li/. The main difference from the 
equations in /il/ is the appearance in the last three boundary conditions of the excess density 

and the surface pressure 6p, = -yk2c. 

4. Acoustic-entropy instability of the shock wave. For homogeneous linear 

system (3.1) to have a non-trivial solution, i.e., for non-zero amplitudes of the acoustic and 
entropy-viscous disturbances to exist, its characteristic determinant must vanish, whence we 

have the following characteristic equation (omitting here and henceforth the subscript 1) 

(1+~)(2~-i~r,)+(B-iP~+~)~ (4.2) 

(+ -‘$ )(1+Y’)--iT(++(l+‘F)+1-&(F)=o 

P=-&, IA*, u:=j2($)H, p=T 

This equation differs from that obtained in /ll/ in the terms with P and r, which take 

account of the surface properties of the shock wave. 

Jointly with the dispersion equation, for the acoustic disturbances in the flow behind 
the shock wave, 

(o - u1)* = c2 (k2 + 1’) (4.2) 

Eq.(4.1) defines the dependence of 61 and 1 on k and cp. 

The condition for shock wave instability amounts to the existence of a solution which 
increases exponentially with time, and decreases exponentially as z-r- 00, i.e., 

Im o>O, Im 1> 0 (4.3) 

Thus the problem of finding the domain of shock-wave instability amounts to finding the 

range of valuesofthe parameter cp for which the solutions o (k, cp) and 1 (k, cp) of systems 
(4.1) and (4.2) satisfy both inequalities (4.3). 

Let us first find the threshold values 'p, corresponding to the boundary of the stability 
domain Im w = 0, Im I> 0; we shall then study the shock-wave stability on going beyond these 

boundaries. 
In dimensionless variables g + i/z = --io/(ku), t+iu. = rl'k, system (4.1), (4.2) becomes (with 

6 = 0) 

t = -_[rx + PI2 (u + h)(l + cp)l[(l + cp)(P + h?)lkl 

211 (I + h’) = (1 + cp)@ + IL*)@ + IL) + rth (1 + CF) 

‘ll,? [P - (h + U)'l = t* - U2 - 1, M,*t (h + u) = tu 

% = CD’CP (1 + IL?) + (1 - h%p) - uh (1 + v) 

(4.4) 

(4.5) 

(4.6) 

By the second of conditions (4.31, t = -Im l/k< 0. This means that, for instability, 
we must have 

I?^/. + Ph(u + h)(l + cp) 2 0, cp s? - 1 (4.7) 

From the second of Eqs.(4.6) we find u = M12h/(l-~~1,*), after which it is clear from (4.5) 

that h can be zero. 

With /I = 0, we obtain from the first of Eqs.(4.6), using (4.3) : t =-l//l/l - At,“. 

Jointly with (4.4), this gives the lower threshold of cp: 

(PH = - (1 + I’ ]/I - .M12) (1 - lw \/I - MIy- (4.8) 
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This expression differs from the lower bound of absolute stability cp = -1 obtained in 

/ll/ by an amount of order I? (i.e., of the order of the Knudsen number relative to the 

perturbation wavelength). The surface tension has virtually no effect on the shock-front 

stability with respect to a non-wave-type perturbation (Re o = --hkv = 0). Hence, just as in 

the theory in /ll/, for 'p< -1 the shock wave becomes absolutely unstable. 

For the threshold value 'p,, of instability with repect to a periodic perturbation (h# 0), 
we obtain from system (4.4)-(4.6): 

‘fo = (PI + 0 (P), (cr = (1 - h!f,* - j3M,*)(l - MI2 f pivrl,y (4.9) 

where ~1 is the same as the limit obtained earlier in /12, 13,' between the domain of shock- 

wave stability and the "neutrally stable" (with Q< v < 1 + %',) domain of spontaneous sound 

radiation. 

Taking account of surface tension has virtually no effect on the position of the boundary 

of the domain of spontaneous sound radiation, though (see Sect.5 below) it makes this domain 

absolutely unstable. 

From Eqs.(4.5) and (4.6), using the condition Re o>O, we find the remaining solutions 

ho x _ r/l - Ml”/Ml, uo = - MI/ IfI - Ml2 (4.10) 

Since u = Re ilk = ctg6(6 is the angle betweentheacousticwave, wave vector and the z axis), 

the expression obtained for u0 reveals that spontaneous sound radiation begins (with w = cpO) 

from an angle 6, > n/2 (cos 6, = -M,). Tl le vector 1 is here directed towards the flow, which 

"carried away" the sound wave /13/. 

Substituting solution (4.10) into condition (4.7), we obtain the inequality 

rcF (Q - 1) + p (1 + cp) > 0 (4.11) 

The second term is certainly greater than zero, while the first is greater than zero if 

[&U.'i&J - (I-o - 2V)i2] [alvlav - (p - p,)/214 > 0 ((1.12) 

Consequently, the necessary condition for the dstruction of stability (4.1) certainly 

holds if the factors in (4.12) are positive. From the definition of (3.1) for (ap/aUH it 

is clear that, as u,, increases, both these quantities (positive for small L~J will remain 

positive throughout the forward course of the shock adiabatic, where it is continuous and 

(aPlmH<o. The denominator in (4.12) retains the positive sign even if the siqn of (apiat.)n 
changes, provided it passes through +m. At this point awlap =(1.& V)/2, so that the numerator 

of (4.12) remains positive in the neighbourhood of this point. Inequality (4.11) then holds. 

Conversely, a change in the sign of (apiav), on continuous passage through a local maximum 

of the shock adiabatic coresponds to a change in the sign of the denominator in (4.12), in 

which case (4.12) is violated and (4.11) may also be violated. 

To prove the absolute instability of the spontaneous sound radiation mode, we out w= 

'po + A and consider system (4.1), (4.2) in the linear approximation with respect to A, 
noting that Im of0 (g# 0). Then, instead of (4.4)-(4.6), we obtain the linear inhomogeneous 

system 
a&' + bit' + C,U' + dig = ciA, i = 1,2, 3, 4 (4.13) 

where the coefficients ai, bi,ci,di,ei are expressible in terms of the solution II,, t,,~,. (f. of 

system (4.4)-(4.6), and the primes denote the deviations, linear in S, from these solutions. 

Hence 

I-M,2 
Imo=kug=- Mla(ltT,,) 

tokvA (4.14) 

If condition (4.7) holds, then t,< 0 and Im w> 0 for A>O, while In) w < 0 for 

A< 0. Hence the spontaneous sound radiation mode becomes absolutely unstable when the shock- 

wave surface tension is taken into account. 

5. Influence of viscosity on shock-wave stability. When we take account of 
viscosity in the equations of hydrodynamics of the gas flow beind the shock front and in 
boundary conditions (1.5)-(1.7) and (l.ll), extra terms appear in the linearized Eqs.(3.1), 

with the result that characteristic Eq.(4.1) takes the form 

where '4 is a polynomial with real coefficients, and T' is the maximum temperature of the gas 

inside the shock layer. 
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The dispersion acoustic Eq.(4.2) in a viscous gas takes the form 

On the boundary of stability (,C = 0) I instead of (4.4)-(4.6) we have a system obtained 
by adding to the right-hand side of (4.4) a term proportional to -cR~Y', to the right-hand 

side of (4.5) a term E ImY, and to (4.6) terms with E from (5.2). 

When analysing this new system, we note that, since the coefficients of the polynomial 
Y are real and g=O, we have ImY--_--_, so that Tt-&ImY--E? and they can be neglected. 

For the same reason, we can throw out the terms with ct. 
We confine our study to the effect of viscosity on the boundary of the domainof spontaneous 

sound radiation, i.e., in the neighbourhood of solutions iz,,u, and YO, obtained above in the 
zero approximation with respect to E. Instead of (4.10) and (4.9), we find 

11, z II,, U1 z - (1 + 4) ii0 (5.3) 

(5.4) 

where E = ?i,eit<O. It can be shown that / E,l<l, in particular, 1 4 j < IF in argon and CO, 

with 'I ='Fa. 
Since ~lr,~Q1 and I5141, these relations mean that, when account is taken of the effect 

of viscosity on the gas flow in the shock front there is a slight displacement of the boundary 

of the domain of spontaneous sound radiation (Ypl > 'PO). 
A study of the stability of the neighbourhood Y = Y,-i- A amounts to analysing a system 

of equations similar to (4.13) except for terms -t‘ in the coefficients b,, d,, R>. cL and el. 
arising from the expansion of ImY and RcY in small disturbances h', t’, N’, A, g. As a result, 

for the imaginary part of the frequency, instead of (4.14), we have 

where t, is given by a relation of type (4.4), to which is added a term with -&Rely in the 

case 11 = II,, II = U,, 'E = 'FL. 
Direct estimation of the explicit expression Y(/L,. ul. Y,) gives ReY>O. We might expect 

from this and general considerations that the flow viscosity should strengthen the spatial 

damping of the acoustic perturbations. 

Thus, (fll>lta[ and under condition (4.11) we certainly have t1< 0, whence follows the 

absolute instability of the shock-wave front with respect to generation of acoustic perturba- 

tions when .J>O. and absolute stability when A < 0. 

This conclusion contradicts the result obtained in /14/, where it is shown that shock- 

wave stability is ensured by allowing for viscosity. However, the viscous damping of the 

shock-wave front perturbations obtained in /14/ is independent of the boundary conditions on 

the shock wave, and this is not physically justified. The reason seems to be that the viscous 

stresses on the curved surface were not quite correctly taken into account in /14/. 

6. Discussion of the results. Our main result is the new boundary conditions (1.5) 

on the curved shock-wave, which include terms of first order in the inverse Reynolds number 

en. By taking account of the shock-wave surface properties, extra terms appear, exceeding 

the viscous stresses introduced earlier in /4/ in the flow behind the shock front. 
The use of new boundary conditions in the classical problem of plane shock-wave stability 

in a relaxing gas with respect to small perturbations of the surface of discontinuity leads 

to a new instability condition, quite different from those obtained in /ll-13/. By taking 

account of surface effects, we arrive at a lowering of the boundary of the domain of soontaneous 

radiation, and what is most important, at absolute instability of this domain, which has 

previously been regarded as neutrally stable. This is explained physically by the excitation 

of capillary waves in the surface of the shock front and by their interaction with the radiated 

sound waves. This threshold of instability is accessible for shock waves in gases with 

dissociationorionization. 
It is difficult to compare the results with experimental data, inasmuch as the linear 

theory consideredhereonly enables us to find the conditions under which the plane shock 

front becomes unstable, while nothing can be said about the final structure, whereas the 

coditions found experimentally are those under which a structure quite different from the 

plane shock front arises. 
A series of experiments was made in /15/ to detect the instability of a plane shock wave 

in argon and (XII . All the cases when stability is destroyed occurred with v_i- q,, on 

pieces of "backward run" of shock adiabatics (in CO, with L‘"> 3 km/set and argon with 

~,>10 km/set), adjacent to the vertical pieces, and also on the piece of "forward run" (in 

CO, with /',, 2 :j.(i km/set) . On all these pieces condition (4.11) holds, so that our present 

theory is in full agreement with the experiments of Griffiths et al. 
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ON INERTIAL EFFECTS ON DISCONTINUITIES IN THE CONCENTRATION OF THE 
SOLID PHASE IN A DISPERSE MEDIUM* 

N.N. BOBKOV and YU.P. GUPALO 

A system of conditions for the conservation of massandmomentum of a 
fluid and a solid phase on the surface of discontinuity in a disperse 

medium is analysed within the framework of the double continuum model /l/. 

The case when there is a high concentration of solid particles on one 

side of the discontinuity and a low or zero concentration of them on the 

other side is considered. Under these conditions in the region of a 
high concentration of the solid phase remote from the discontinuity, the 

inertial force of the fluid phase is small compared with the interphase 
interaction force and Darcy's law holds while both forces are of the 
same order of magnitude in the thin transition lower close to the surface 
of discontinuity. It is assumed that the surface of discontinuity is 
impermeable to the particles of the solid phase. Effects due to the 
possible occurrence of surface tension on the discontinuity are not 
considered. 

Subject to the assumptions which have been made, a solution of the 
initial system of equations of motion and continuity of the phases is 
constructed in the stationary approximation taking account of the 

transition layer which satisfies the condition of the continuity of the 
--- ----------I_- 
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